The Nile on eBay Fractional-in-Time Semilinear Parabolic Equations and Applications by Ciprian G. Gal, Mahamadi Warma
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra–Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics.Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions.This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology, whose research involves partial differential equations.
FORMATPaperback LANGUAGEEnglish CONDITIONBrand New Back Cover
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra-Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology whose research involves partial differential equations.
Author Biography
Ciprian Gal is Associate Professor at Florida International University, Miami, Florida (USA). His research focuses on the analysis of nonlinear partial differential equations including nonlocal PDEs.Mahamadi Warma is Professor at George Mason University in Fairfax, Virginia (USA). His reseach focuses on linear and nonlinear partial differential equations, fractional PDEs and their controllability-observability properties.
Table of Contents
1. Introduction.-1.1 Historical remarks .-1.2 On overview of main results and applications .-1.3 Results on nonlocal reaction-diffusion systems 2. The functional framework.-2.1 The fractional-in-time linear Cauchy problem .-2.2 Ultracontractivity and resolvent families .-2.3 Examples of sectorial operators .-3 The semilinear parabolic problem.-3.1 Maximal mild solution theory .-3.2 Maximal strong solution theory .-3.3 Differentiability properties in the case 0 < a < .-3.4 Global a priori estimates .- 3.5 Limiting behavior as a ®1.- 3.6 Nonnegativity of mild solutions .-3.7 An application: the fractional Fisher-KPP equation .-4 Systems of fractional kinetic equations .-4.1 Nonlinear fractional reaction-diffusion .-4.2 The fractional Volterra-Lotka model .-4.3 A fractional nuclear reactor model .-5 Final remarks and open problems .-A Some supporting technical tools .-B Integration by parts formula for the regional fractional Laplacian .-C A zoo of fractional kinetic equations.-C.1Fractional equation with nonlocality in space.-C.2 Fractional equation with nonlocality in time.-C.3 Space-time fractional nonlocal equation.-References.-Index.
Feature
Provides a general framework which will facilitate the further study of nonlocal reaction-diffusion systems Addresses the existence of (non-regular) mild solutions, strong solutions, and the global regularity problem Establishes clear connections between fractional in time and classical parabolic problems
Details ISBN3030450422 Author Mahamadi Warma Language English Year 2020 ISBN-10 3030450422 ISBN-13 9783030450427 Format Paperback DOI 10.1007/978-3-030-45043-4 Series Number 84 Pages 184 Publication Date 2020-09-24 UK Release Date 2020-09-24 Edition 1st Place of Publication Cham Country of Publication Switzerland Illustrations 103 Illustrations, black and white; XII, 184 p. 103 illus. Publisher Springer Nature Switzerland AG Edition Description 1st ed. 2020 Series Mathématiques et Applications Imprint Springer Nature Switzerland AG DEWEY 515.3534 Audience Professional & Vocational We've got this
At The Nile, if you're looking for it, we've got it.With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love!
TheNile_Item_ID:129896054;